Some warm and some hot in MOND phenomenology

Moti Milgrom (Weizmann)

The basic premises of the MOND paradigm

Modified dynamics at low accelerations as an alternative to Newtonian Dynamic (with DM)

- ullet The appearance of a new acceleration constant in dynamics, a_0
- Standard limit : $a_0 \to 0$
- MOND limit, $a_0 \to \infty$: $a_0, G \to a_0G$ for pure gravity

Various theories: modify the Poisson equation; modify Newton's second law; modify GR

Independent Kepler-like laws of galactic dynamics

- ullet Asymptotic constancy of orbital velocity: $V(r)
 ightarrow V_{\infty}$
- The mass-velocity relation (baryonic TF relation): $V_{\infty}^4 = MGa_0$
- $\sigma^4 \sim MGa_0$ relation ("isothermal" spheres, deep MOND virial relation)
- Discrepancy appears always at $V^2/R = a_0$
- Isothermal spheres have surface densities $\bar{\Sigma} \leq a_0/G$
- The thin-lens approximation is not valid
- Disc galaxies have a disc AND a spherical "DM" components

- Added stability of discs with $\bar{\Sigma} \leq a_0/G$
- The external-field effect
- Special role of the transition radius: $r_t \equiv (MG/a_0)^{1/2}$
- Excess acceleration always $\lesssim a_0$
- Negative density of "dark matter" in some locations.

The mass-velocity (baryonic Tully-Fisher) relation

from McGaugh 2006

Rotation Curves of Disc Galaxies

Rather robust to change in theory

For modified inertia $a\mu(a/a_0)=\phi'(R)$, with $a=V^2/R$ and $\mu(x)$ universal

Sanders and McGaugh 2002

$$a_0 = ?$$

 a_0 can be derived in several independent ways:

$$a_0 \approx 1.2 \times 10^{-8} \text{ cm s}^{-2}$$

- $2\pi a_0 \approx cH_0$
- $2\pi a_0 \approx c(\Lambda/3)^{1/2}$

Dwarf spheroidals (Angus 2008)

Debris dwarf galaxies

Data and Newtonian analysis from Bourneau et al (2007) MOND analysis: Milgrom (2007)

Solar System: the Pioneer Anomaly

UNMODELED ACCELERATIONS ON PIONEER 1 0 AND 11 Acceleration Directed Toward the Sun

From Anderson et al. 2002

MOND and galaxy clusters

- Early 1990s: MOND does not explain the discrepancy in cluster cores
- ullet Measured acceleration within a few 100 kpc are $> a_0$
- Modify MOND to account for this?
- Most reasonable solution: some yet undetected baryons (Milgrom 2008)
 - $\triangleright M(CBDM) \sim M(gas)$
 - Doly a small contribution to nucleosynthesis value

BDM in clusters according to MOND

Sanders 1999

14

The bullet cluster

Clowe et al. 2006

Results expected from what we know on isolated clusters (Angus et al. 2006)

BDM is largely non-dissipational

The high-relative-velocity problem

The "ring" cluster (Cl 0024+17)

Jee et al. (2007)

Milgrom & Sanders (2008)

MOND defines the transition radius $r_t \equiv (MG/a_0)^{1/2}$ (analog to $r_G = MG/c^2$)